Switchable magnetic metamaterials using micromachining processes.

نویسندگان

  • Wei Ming Zhu
  • Ai Qun Liu
  • Xu Ming Zhang
  • Din Ping Tsai
  • Tarik Bourouina
  • Jing Hua Teng
  • Xin Hai Zhang
  • Hong Chen Guo
  • Hendrix Tanoto
  • Ting Mei
  • Guo Qiang Lo
  • Dim Lee Kwong
چکیده

switchable metamaterials that possess very different states are almost a necessity. [ 11 ] Most of the tunable metamaterials that have been demonstrated rely on tuning constituent materials or changing surrounding media by introducing natural materials with higher tunability, such as liquid crystals and phase changing materials. [ 12–19 ] However, this limits the choices of materials and becomes increasingly diffi cult to implement at higher frequencies. Moreover, the tuning range is usually too limited to achieve a switching effect between strikingly different states. A complementary approach is to mechanically reconfi gure the metamaterial molecules. [ 20 , 21 ] Micromachining technology has been developed for fabrication and actuation of micromechanical devices [ 22–26 ] with switching frequencies up to the GHz level. [ 27 ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micromachining the Aluminium Tubes Using Abrasive Finishing in Alternating Magnetic Field

This study introduced a method based on magnetic field assisted finishing mechanism for micromachining the inner surfaces of Aluminum tubes. In this approach, using the alternating magnetic field of an AC electromotor, abrasive particles were formed as Magnetic Rods (Magnetic Clusters) and surface micromachining was carried out by the dynamic particular pattern made by an alternating magnetic f...

متن کامل

Micro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles

Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...

متن کامل

Micro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles

Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...

متن کامل

Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the ...

متن کامل

Chiral metamaterials: enhancement and control of optical activity and circular dichroism

The control of the optical activity and ellipticity of a medium has drawn considerable attention due to the recent developments in metamaterial design techniques and a deeper understanding of the light matter interaction in composite metallic structures. Indeed, recently proposed designs of metaatoms have enabled the realisation of materials with unprecedented chiral optical properties e.g. str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 23 15  شماره 

صفحات  -

تاریخ انتشار 2011